D112867

Air-to-water heat pump JÄSPI SPLIT 6,8,12,16

Contents

7	Important	4
	System solution	4
	Safety information	4
	Symbols	4
	Marking	4
	Safety instructions	4
	Serial number	6
	Recycling	
	Environmental information	6
	Checklist: Pre-commissioning inspection_	7
	Compatible indoor modules and control	
	units (MCU)	8
	Indoor modules	8
	Control units	8
2	Delivery and handling	9
	Transport and storage	9
	Installation	9
	Removing access panels	13
3	Heat pump construction	15
	Component location Split 6	15
		16
	Component location Split 12	17
		18
	Component list Split outdoor unit	19
	Electrical panel	
	Sensor locations	
4	Plumbing connections	25
5	Electrical connections	26
	General	26
	Electrical components	27
	Access, electrical connection	27
	Connections	28
6	Start-up and adjustments	31
	Compressor heater	31

7	Control – Heat pump	32
8	Faults	33
9	Alarm list	34
10	Accessories	36
11	Technical specifications	37
	Dimensions	37
	Sound pressure levels	
	Technical specifications	
	Working area	
	Output and COP	45
	Output with a smaller fuse rating	48
	Energy rating	49
	Electrical schematic	54
Ind	lex	58
Col	ntact details	63

1 Important

System solution

The Split outdoor unit is intended for installation together with SplitBox and indoor module Tehowatti Air or control unit MCU 40 for a perfect system solution.

Safety information

This manual presents installation and maintenance procedures, which must be performed by a professional.

The manual must be left with the customer.

This device may be used by people 8 years of age and older as well as people with restricted physical, sensory or mental capacities, or those with insufficient experience or knowledge, provided that they are given instruction and information on the safe use of the device and they understand the risk factors associated with its operation. The product is intended for use by experts or trained users in commercial premises, hotels, light industry, agriculture and similar environments.

Children must be supervised to ensure that they do not play with the device.

Never allow children to clean or service the device without proper instruction.

This is the original manual. It may not be translated without the express consent of Kaukora.

We reserve the right to structural changes. KAUKORA OY 2019.

Symbols

NOTE!

This symbol indicates a hazard to personnel or machinery.

REMEMBER!

This symbol indicates important information, which should be taken into account when installing or servicing devices.

TIP!

This symbol indicates a tip for making product handling easier.

Markings

The CE marking is mandatory for most products sold within the EU, regardless of their place of manufacture.

IP21

Enclosure rating for electrotechnical devices. Hazardous to humans or machinery.

Read the operating instructions.

Safety instructions

WARNING

Install the system in full accordance with the instructions given in this installation manual. Improper installation can result in an explosion, accident, water leakage, refrigerant leakage, electrical shock or fire.

Give attention to measurement values when servicing the refrigerant system in confined spaces to ensure that the refrigerant concentration limits are not exceeded.

Contact an expert to help interpret measurement values. If the refrigerant concentration exceeds set values, any leakage could result in oxygen displacement, thus causing a serious accident.

Use original manufacturer accessories and listed components in the installation.

If other parts are used, this can result in water leakage and electrical shock, fire or injury, as the device may not operate properly.

Ventilate the working space effectively - refrigerant may leak while servicing the device.

The refrigerant produces a toxic gas when coming into contact with an open

Install the device on a solid, load-bearing surface.

An improper installation site can result in the device falling, thus causing property damage and injury. Improper installation can also cause vibration and noise problems.

Install the device solidly so that it can withstand earthquakes and storm

An improper installation site can result in the device falling, thus causing property damage and injury.

All electrical installations must be performed by a licensed electrician, and the system must be connected as a separate circuit.

An underdimensioned, faulty power supply can result in electric shock and

Use listed cables for electrical connections, fasten the cables securely into cable terminals and mount the cables properly to avoid any undue stress on the terminals.

A loose terminal or cable clamp can result in overheating or fire

After installation or servicing, check to ensure that there is no

refrigerant gas leaking from the system.

If refrigerant leaks into the household and comes into contact with space heaters, ovens or any other hot surface, it can produce a toxic gas.

Shut off the compressor before opening the refrigerant circuit.

If the refrigerant circuit is opened while the compressor is running, air may get into the process circuit. In this case, the process circuit pressure will rise excessively high, thus possibly resulting in an explosion and injury.

Shut off the power supply while servicing or inspecting the device. If the power supply is not shut off, there is a risk of injury from electric shock and spinning fan blades.

Never operate the device with the panel or cover removed.

Contact with spinning parts, hot surfaces and live parts can cause injuries resulting from entanglement, burns or electric shock.

Shut off the power supply before performing any electrical work. If the power supply is not shut off, you may get an electric shock or the device may be damaged, thus malfunctioning.

CAUTION

Make all electrical connections carefully.

Electrical connections must be made by electricians licensed in accordance with all currently applicable legislation. Never connect the ground wire to gas pipes, water pipes, lightning rods or telephone ground wires. Improper grounding can result in device malfunction as well as electric shock caused by a short circuit.

Use a main power switch with sufficient breaking capacity.

If the breaking capacity of a switch is insufficient, it can result in malfunction and fire.

Only use correctly dimensioned fuses (correct trip current) in places requiring fuses.

Connecting a device with copper wire or other metal wire can damage the device and cause a fire.

Cables must be installed so that they do not rub against metal edges or become pinched between panels.

Improper installation can result in electric shock, damage to the device, overheating or fire.

Never install the device in a place where flammable gases can leak. If gas accumulates around the device, it can result in fire

Never install the device in a place where corrosive gases (e.g. sulfuric acid gases) or flammable gases or vapours (e.g. thinner and petrol fumes) may be produced or accumulate, or where volatile, flammable substances are handled.

Corrosive gases may result in corrosion of the heat exchanger, breakage of plastic parts, etc., and flammable gases and vapours can result in fire.

Never use the device in places with water spray, such as laundries. The indoor module is not watertight and water can cause an electric shock or fire.

Never use the indoor module for specialised purposes, such as storing food, cooling precision instruments or the cold storage of animals, plants or artwork.

This kind of use can result in property damage.

Never install or use the system near equipment that generates an electromagnetic field or high-frequency overtones.

Inverters, backup power supplies, high-frequency medical equipment and telecommunications equipment can affect the device, resulting in malfunctions and causing damage to it. In addition, the device can interfere with the functioning of medical devices and telecommunications equipment, causing them to malfunction or stop working entirely.

Never install the device in any of the places listed below.

- Places where flammable gases may leak.
- Places where there may be carbon fibres, metal dust or other dust in the air.
- Places where there may be substances that can damage the device, such as sulfide-based gases, chlorine gas, acids or bases.
- Places where the device may be exposed to oil fumes or vapours.
- Vehicles or vessels.
- Places where machines producing high-frequency overtones are used.
- Places where cosmetics or specialised sprays are used frequently.
- Places where the system may be directly exposed to salty air. In this case, the outdoor unit should be covered to prevent direct exposure to salty air.
- Places where there is a large amount of snowfall.
- Places where the system is exposed to smoke.

If the base frame of the outdoor unit is rusty or damaged in some other way after a long service life, it must be taken out of use.

The use of an old, damaged frame can cause the device to fall, thus possibly resulting in injury.

If there is a need to solder close to the device, ensure that the drip tray

is damaged by any spatter.

If any spatter gets on the device from soldering, the spatter can eat small holes into the drip tray, thus resulting in water leakage. In order to avoid this, the device should be left in its packaging or covered.

Never place the end of the condensation hose into a pit or well where toxic gases (e.g. gases containing sulfides) may form.

If the end of the hose is in such a pit or well, the toxic gases will flow into the

room and can jeopardise the health and safety of the users.

Insulate the device pipes to prevent condensation from forming on them. Insufficient insulation can cause condensation, thus resulting in moisture damage to the ceiling, floor, furniture and valuables.

Never place the outdoor unit in a place where insects and small animals can build nests inside it.

Insects and small animals may reach the electronic components, thus causing damage or a fire. Advise the customer to keep the area around the device clean.

Be careful when carrying the device by hand.

If the device weighs more than 20 kg, an assistant will be needed to help carry it. Use gloves to prevent cuts.

Dispose of the packaging materials properly.

The packaging materials can cause injury, because nails and wood are used in

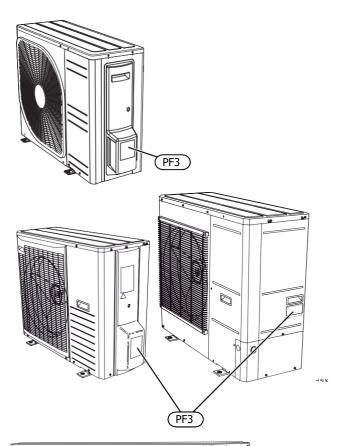
Never press buttons if your hands are wet.

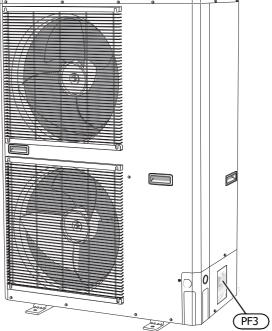
You can get an electric shock.

Never touch refrigerant pipes with bare hands when the system is

During operation, the pipes may become extremely hot or cold, depending on the device function. Touching pipes can result in burns

Do not shut off the power supply immediately after the heat pump stops. Wait at least 5 minutes. Otherwise, a water leak may occur or the device may be damaged.


Never shut the system off at the main switch.


This can result in fire or cause a water leak. In addition, the fan can turn on unexpectedly, thus resulting in an accident.

Section 1 | Jäspi Split 5

Serial number

The service code and serial number (PF3) are found on the right side of the outdoor unit.

REMEMBER!

You will need the product service code and serial number for maintenance and support.

Recycling

Let the product installer or waste station handle disposal of the packaging.

When the product reaches the end of its service life, it cannot be disposed along with other common household waste. It must be disposed of at a waste station or returned to a dealer offering a disposal service.

Failure to properly dispose of the product will result in the imposing of administrative sanctions on the user in accordance with currently applicable legislation.

Environmental information

This unit contains fluorinated greenhouse gases, which are included in the Kyoto Protocol.

The device contains R410A, a fluorinated greenhouse gas with a GWP (Global Warming Potential) of 2088. Never allow R410A to be released into the air.

Section 1 | Jäspi Split

Checklist: Pre-commissioning inspection

Refrigerant system	Remarks	Inspected
Pipe length		
Height difference		
Pressure test		
Leak detection		
Final pressure vacuum pumping		
Pipe insulation		
Electrical installation	Remarks	Inspected
Main fuse of the property		
Group fuse		
Pilot switch/current sensor (connected to the indoor module/control unit)		
KVR 10		
When installing the Split 6, ensure that the software version of the indoor module/control unit is at least v8320.		
Cooling	Remarks	Inspected
Pipes, condensation insulation		

Jäspi Split Section 1 | 7

Compatible Tehowatti Air indoor module and MCU40 control unit

All Jäspi Split 6-12 outdoor units with SplitBox are compatible with the Tehowatti Air indoor module and MCU 40 control unit.

Tehowatti Air product no. 5858528 MCU 40 product no. T000676

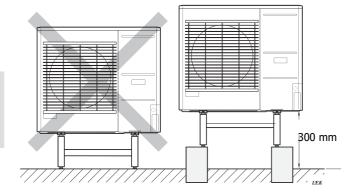
8 Section 1 | Jäspi Split

2 Delivery and handling

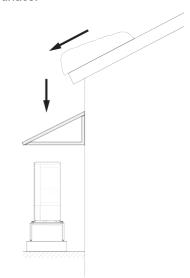
Transport and storage

The outdoor unit must be transported and stored upright.

NOTE!


Ensure that the heat pump cannot tip over during transport.

Installation


 Place the outdoor unit outside on a solid surface that can hold its weight, preferably a concrete floor or pad.

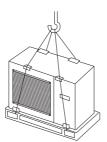
When using concrete tiles, they must be placed on a gravel or crushed aggregate bed.

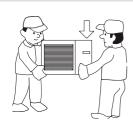
- A concrete base or tiles must be placed so that the lower edge of the evaporator will be roughly equal to the average snow depth, but no higher than 300 mm. See pads and consoles on page 36.
- The outdoor unit must not be placed next to walls where noise will be a problem, such as the exterior wall of a bedroom.
- · In addition, the system should not disturb neighbours.
- The outdoor unit must not be placed so that outside air can swirl around the unit. This reduces output and decreases efficiency.
- The evaporator must be sheltered from direct wind, because this can reduce the defrosting capacity. Place the outdoor unit so that the evaporator is sheltered from the wind.
- A large volume of meltwater may run out of the heat pump during defrosting. Condensation water should be run into a rainwater well or similar (see page 10).
- Be careful not to scratch the heat pump during installation.

Never place the outdoor unit directly on a lawn or other soft surface.

If there is a possibility that snow can fall onto the heat pump from the roof, a shelter or similar structure must be built to protect the heat pump, pipes and cables.

Jäspi Split Section 2 | Delivery and


LIFTING THE UNIT FROM THE STREET TO THE INSTALLATION SITE


If the surface allows, a pallet jack should be used to move the outdoor unit to its installation site.

NOTE!

The centre of gravity is on one end (look at the markings on the packaging).

If the outdoor unit has to be moved on a soft surface (e.g. a lawn), we recommend that the heat pump be lifted with a truck-mounted HIAB crane. When the device is lifted with a crane, the packaging must not opened and the load should be distributed evenly (see figure above).

If it is not possible to use a crane, the outdoor unit can be moved with a heavy-duty hand truck, The outdoor unit must be lifted from the side marked "heavy side". An assistant will be needed to move the outdoor unit.

LIFTING FROM A PALLET TO THE INSTALLATION SITE

Before lifting, remove the packaging and load securing.

Run lifting slings around each leg. Four people will be needed to lift the device - one person for each sling.

The heat pump may only be lifted from its legs.

DISPOSAL

When disposing of the product, it must be removed in reverse order. In this case, the device should be lifted from its base plate instead of on a pallet!

CONDENSATION WATER DRAINAGE

Condensation water drains into the ground under the outdoor unit. In order to avoid damaging the house and heat pump, condensation water should be collected and drained out.

NOTE!

Effective drainage is vital to the proper functioning of the heat pump. The condensation hose should be placed so that water will not damage the house.

NOTE!

In order to ensure proper function, accessory KVR 10 should be used. (Not included.)

NOTE!

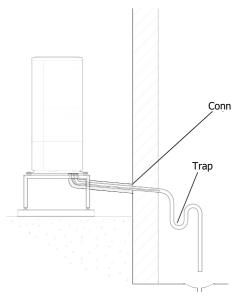
Electrical and cable installations must be performed under the supervision of a licensed electrician.

NOTE!

Self-regulating heating cables may not be connected.

- Condensation water (up to 50 I/day) must be run from the device into a drain with as short a length of pipe as possible.
- The exposed section of pipe must be heated with a heating cable to prevent freezing.
- The pipe must descend from the heat pump to the drain for its entire length.
- The end of the drainage pipe must be below the frost line or indoors (compliance with local regulations is required).
- · Use a trap if air can circulate in the drainage pipe.
- Insulation must be firmly pressed against the bottom of the drip tray.

Drip tray heater, control

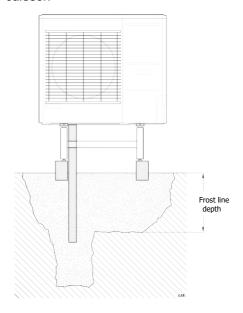

Voltage is supplied to the drip tray heater when the following conditions are met:

- The compressor has been running for at least 30 minutes after the last start.
- 2. The ambient temperature is below 1 °C.

0 Section 2 | Delivery and Jäspi Split

Recommended alternative to condensation water drainage

Indoor floor drain

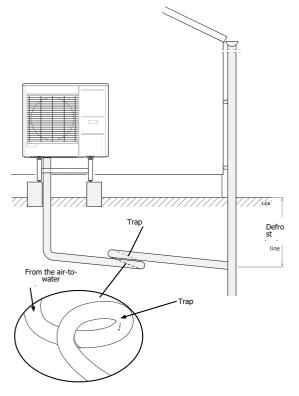

Condensation water is run to the indoor floor drain (compliance with local regulations is required).

The pipe must descend from the heat pump for its entire length.

There must be a trap in the drain pipe to ensure that no air can circulate in the pipe.

KVR 10 is extended as shown in the figure. The pipe extension into the inside of the house is not included.

Stone caisson


If the house has a basement, the stone caisson must be placed so that meltwater will not damage the house. Otherwise, the stone caisson can be placed directly under the heat pump.

The end of the drain pipe must be below the frost line.

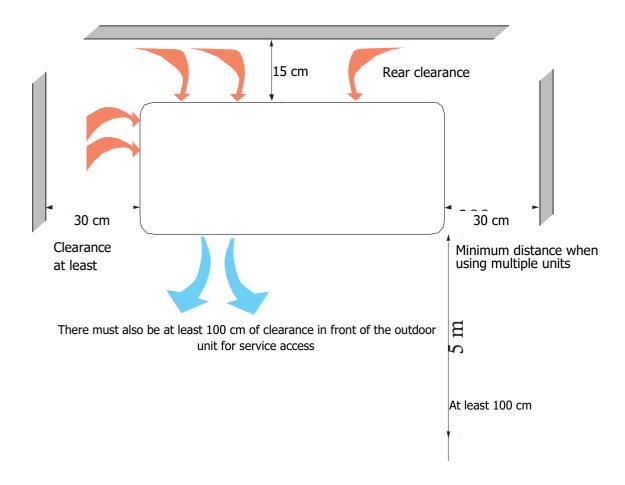
Rainwater well

NOTE!

Bend the hose into a loop to form a trap (see figure).

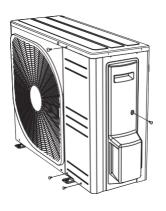
- The end of the drain pipe must be below the frost line.
- The pipe must descend from the heat pump for its entire length.
- There must be a trap in the drain pipe to ensure that no air can circulate in the pipe.
- The installation length can be adjusted by changing the size of the trap.

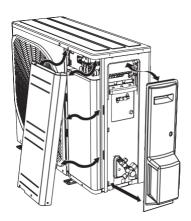
REMEMBER!

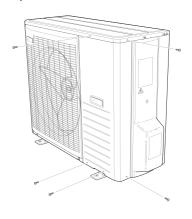

If the recommended alternatives are not used, steps must be taken to ensure that condensation water is effectively drained.

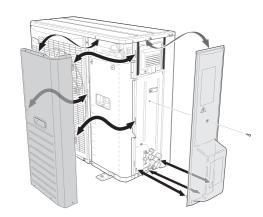
11

Jäspi Split Section 2 | Delivery and

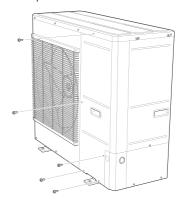

INSTALLATION SPACE

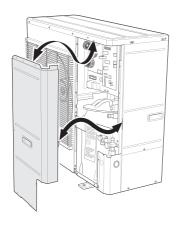

The distance between the outdoor unit and wall must be at least 15 cm. There must be at least 100 cm of overhead clearance above the outdoor unit. There must also be 100 cm of clearance in front of the outdoor unit for service access


12 Section 2 | Delivery and Jäspi Split

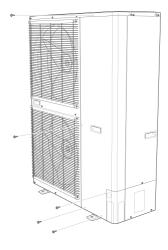

Split 6

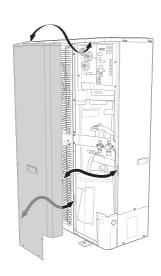
Split 8





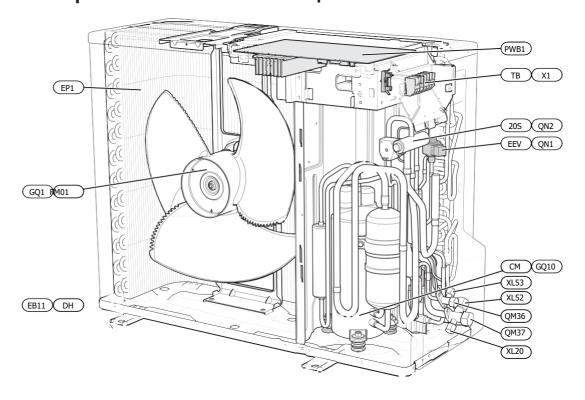
Jäspi Split Section 2 | Delivery and 13


Split 12

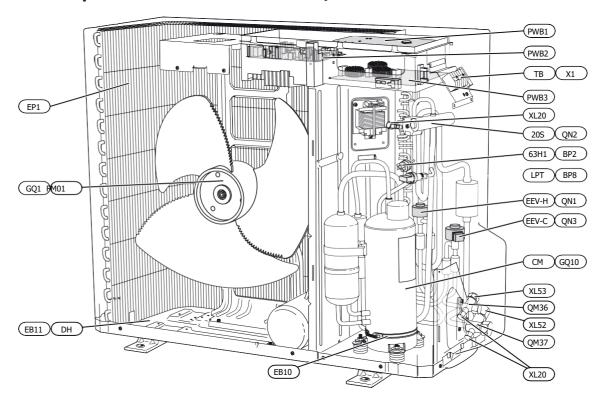


Split 16

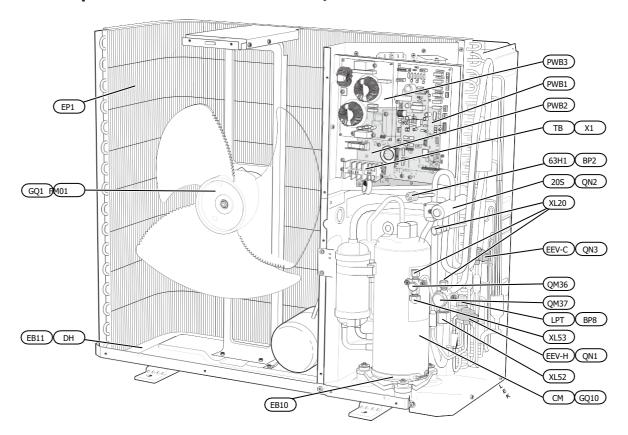
14



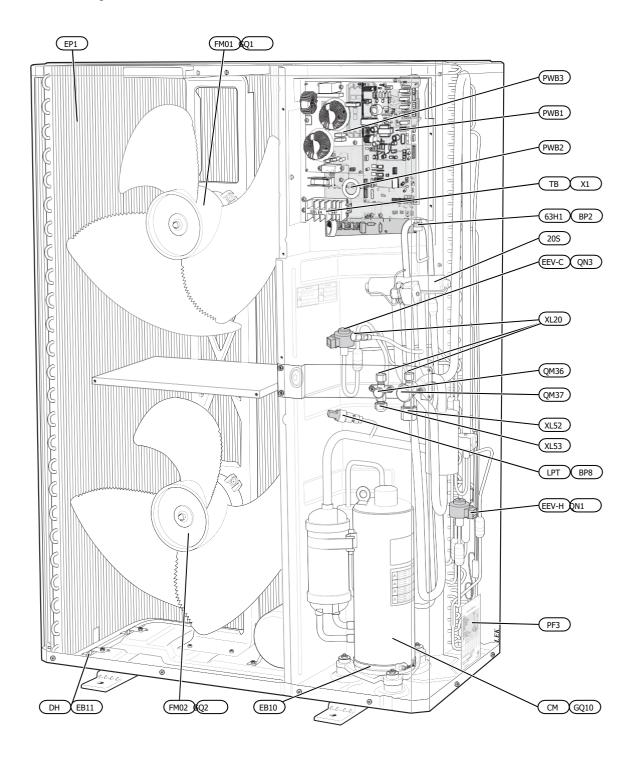
Section 2 | Delivery and Jäspi Split


3 Heat pump construction

Component location Split 6



Jäspi Split Section 3 | Heat pump 15


Component location Split 8

Component location Split 12

Component location Split 16

Section 3 | Heat pump Jäspi Split

18

Component list Split outdoor units

PLUMBING CONNECTIONS

QM36 Service valve, liquid side QM37 Service valve, gas side

XL20 Connection, service
XL52 Connection, gas pipe
XL53 Connection, liquid

pipe

SENSOR ETC.

BP2 (63H1) High-pressure pressostat
BP8 (LPT) Low-pressure transmitter

ELECTRICAL COMPONENTS

EB11 (DH) Drip tray heater

GQ1 (FM01) Fan GQ2 (FM02) Fan

(PWB1) Control board (PWB2) Inverter board (PWB3) Filter board

X1 (TB) Terminal block, power supply and communication

REFRIGERATION COMPONENTS

EB10 (CH) Compressor heater

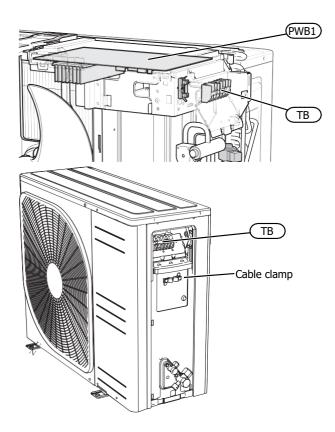
EP1 Evaporator GQ10 (CM) Compressor

QN1 (EEV-H) Expansion valve, heating

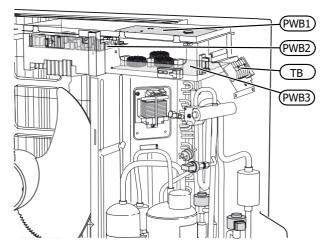
QN2(20S) 4-way valve

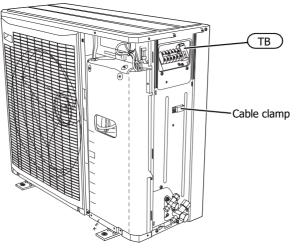
QN3 (EEV-C) Expansion valve, cooling

OTHER

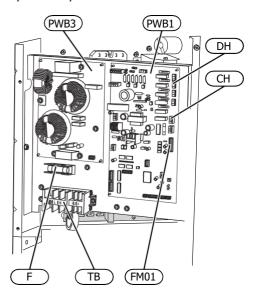

PF3 Type plate

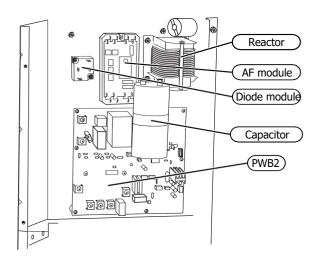
Component diagram markings compliant with the EN 81346-2 standard. Markings in parentheses are compliant with the manufacturer's standard.


Jäspi Split Section 3 | Heat pump 19


Electrical panel

COMPONENT LOCATION Split 6




Split 8

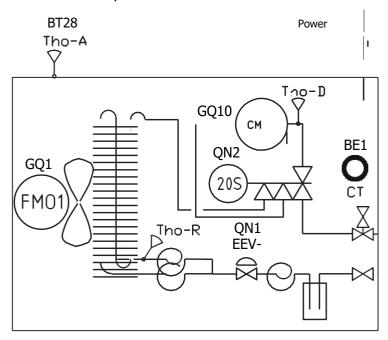
Split 12/Split 16

Electrical components Split outdoor units

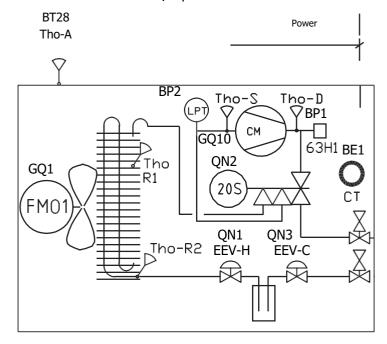
(CH) Compressor heater (DH) Drip tray heater

F Fuse
(FM01) Fan motor
(PWB1) Control board
(PWB2) Inverter board
(PWB3) Filter board

(TB) Terminal block, power supply and communication

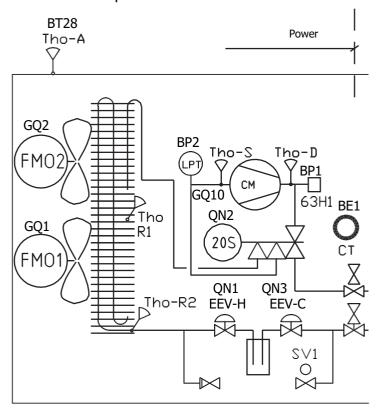

Component diagram markings compliant with the EN 81346-2 standard. Markings in parentheses are compliant with the manufacturer's standard.

Jäspi Split Section 3 | Heat pump 21


Sensor locations

TEMPERATURE SENSOR PLACEMENT

Outdoor unit Split 6



Outdoor unit SPLIT 8 / Split 12

22 Section 3 | Heat pump Jäspi Split

Outdoor unit Split 16

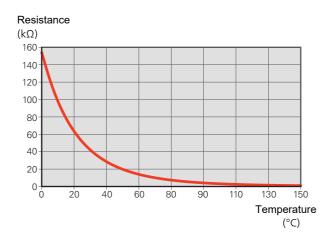
BE1 (CT) Current sensor
BT28 (Tho-A) Ambient temperature
BP1 (63H1) High-pressure pressostat
BP2 (LPT) Low-pressure transmitter

GQ1 (FM01) Fan
GQ2 (FM02) Fan
GQ10 (CM) Compressor

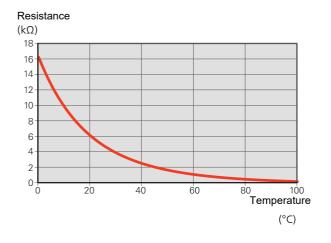
QN1 (EEV-H) Expansion valve, heating

QN2 (20S) 4-way valve

QN3 (EEV-C) Expansion valve, cooling Tho-D Temperature sensor, hot gas

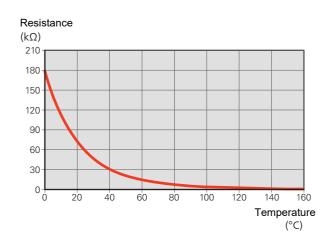

Tho-R1 Temperature sensor, evaporator (out)
Tho-R2 Temperature sensor, evaporator (return)
Tho-S Temperature sensor, suction gas

Component diagram markings compliant with the EN 81346-2 standard. Markings in parentheses are compliant with the manufacturer's standard.

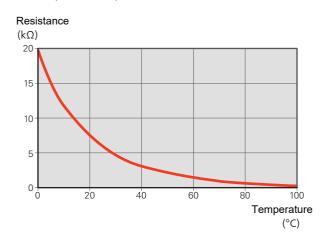

Jäspi Split Section 3 | Heat pump 23

Split 6 SENSOR INFORMATION

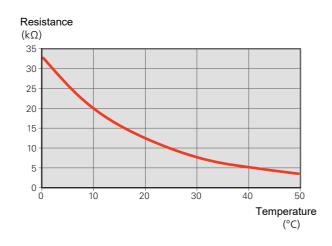
Tho-D



Tho-A, R



Split 8/12/16 SENSOR INFORMATION


Tho-D

Tho-S, Tho-R1, Tho-R2

Tho-A (BT28)

24 Section 3 | Heat pump Jäspi Split

4 Plumbing connections

NOTE!

Further information: See chapter "Plumbing connections" in the SplitBox installation manual

Jäspi Split Section 4 | Plumbing

25

5 Electrical connections

General

The outdoor unit and SplitBox are not fitted with a power supply circuit breaker. As a result, the supply cables must be connected to a circuit breaker with a minimum breaking gap of 3 mm.

The supply voltage must be 230 V 50 Hz from an electrical distribution board with fuses.

- Before running an insulation test on the property, the SplitBox and outdoor unit must be disconnected from the power supply.
- Fuse sizes (see "Fuses" in technical specifications).
- If the property is fitted with earth-fault breakers, the outdoor unit must be connected to its own, separate earth-fault breaker.
- The heat pump must not be connected without the consent of the power supplier, and all connections must be performed under the supervision of a licensed electrician.
- Cables must be installed so that they do not rub against metal edges or become pinched between panels.
- The outdoor unit is fitted with a single-phase compressor.
 This means that one phase is loaded with a current of multiple amperes (A) while the compressor is running. The maximum loads are shown in the table.

Outdoor unit	Max. current (A)
Split 6	15
Split 8	16
Split 12	23
Split 16	25

 The maximum allowable phase load can be limited to a lower maximum current in the indoor module or control unit

NOTE!

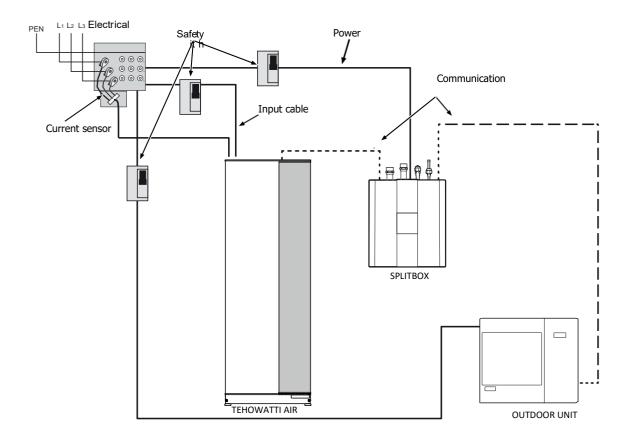
Electrical connections and any necessary maintenance may only be performed under the supervision of a licensed electrician. Shut the power off at the circuit breaker before performing any maintenance work. Electrical connections and wire pulling must be done in full accordance with valid legislation and regulations.

NOTE!

In order to avoid damaging the electronics in the airto-water heat pump, check all connections, line-toline voltage and line-to-neutral voltage before starting the machine.

NOTE!

When connecting, pay attention to live external control.



NOTE!

If the power supply cable is damaged, it must only be replaced by KAUKORA, a manufacturer service representative or an equivalent licensed professional in order to ensure safety.

Section 5 | Electrical Jäspi Split

PRINCIPLE - ELECTRICAL INSTALLATION

Electrical components

See component locations in section Heat pump construction, Electrical panel on page 20.

Access - electrical connection

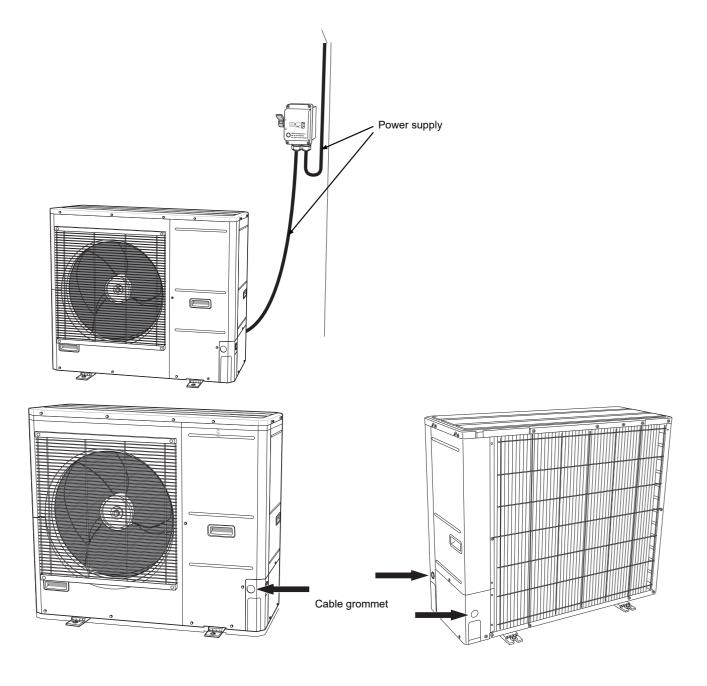
REMOVING ACCESS PANELS

See section Removing access panels on page 13.

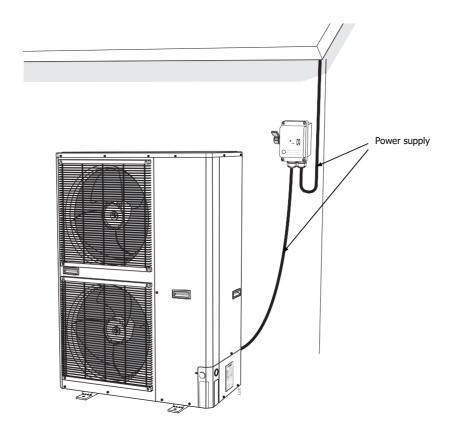
Jäspi Split Section 5 | Electrical

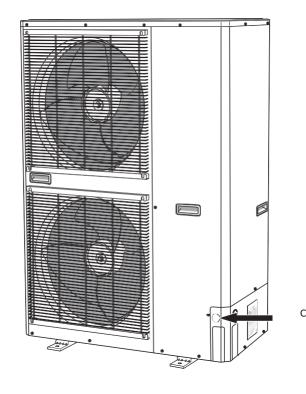
27

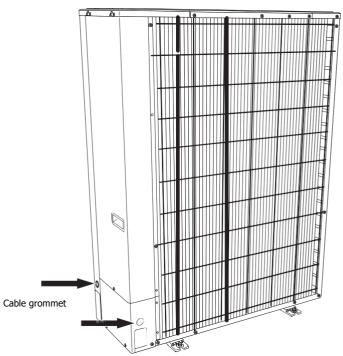
Connections



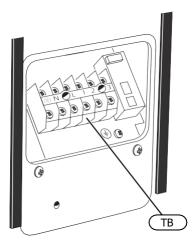
28


NOTE!


In order to avoid faults, the outdoor connections for communication and/or sensor cables must be installed at least 20 cm from the high voltage cable.


ELECTRICAL CONNECTION Split outdoor unit

Section 5 | Electrical Jäspi Split



29

Jäspi Split Section 5 | Electrical

COMMUNICATION CONNECTION

The communication cable is connected to the TB.

See also the electrical schematic on page 54.

For additional information, refer to the SplitBox installation manual.

CONNECTING ACCESSORIES

The instructions for connecting accessories can be found in the installation instructions included with each accessory. See page 36 for the list of accessories that can be used with the outdoor unit.

30

NOTE!

Further information: Further information: See chapter "Electrical connections" in the SplitBox installation manual.

Section 5 | Electrical Jäspi Split

6 Start-up and adjustments

Compressor heater

The outdoor unit is fitted with a compressor heater (CH), which heats the compressor before starting and when the compressor is cold. (Does not apply to the Split 6)

NOTE!

The compressor heater should be turned on 6-8 hours before the first start-up (see chapter "Start-up and inspections" in the indoor module/outdoor unit installation instructions).

NOTE!

Further information: See chapter "Commissioning and adjusting" in the SplitBox installation manual.

Jäspi Split Luku 6 | Start-up and 31

7 Control - Heat pump

NOTE!

Further information: See chapter "Control - Heat pump" in the SplitBox installation manual.

8 Faults

NOTE!

Further information: See chapter "Faults" in the SplitBox installation manual

Jäspi Split Section 8 | 33

9 Alarm list

Alarm	Alarm text on the screen	Description	Possible cause
162	High condenser out.	Temperature too high out from the condenser.	Low flow during heating
		Self-resetting.	Temperatures set too high
163	High condenser in.	Temperature too high into the condenser. Self-resetting.	Temperature generated by another heat source
183	Defrosting in progress	Not an alarm - only the operational status.	Set when the heat pump is defrosting.
220	HP alarm	The high pressure switch (63H1) is triggered 5 times within 60 minutes or for 60 minutes continuously.	Insufficient air circulation or blocked heat exchanger
			Open circuit or short circuit in the high pressure switch (63H1) input
			Faulty high pressure switch
			Expansion valve not connected properly
			Service valve closed
			Defective control board
			Low or no flow during heating
			Faulty circulation pump
			• Faulty fuse, F(4A)
221	LP ALARM	Low pressure sensor (LPT) value too low 3 times within 60 minutes.	Open circuit or short circuit in the low pressure sensor input
			Faulty low pressure sensor (LPT)
			Faulty control board in the outdoor unit
			Open circuit or short circuit on input for suction gas sensor (Tho-S)
			Faulty suction gas sensor (Tho-S)
223	OU Com. error	Communication between the control board and	Any circuit breakers are off
		communication board is interrupted. There must be a 22 volt direct current (DC) for switch	Faulty cable routing
		CNW2 on the control board (PWB1).	
224	Fan alarm	Deviations in fan speed	Fan cannot rotate freely
		in the outdoor unit.	Faulty control board
			Faulty fan motor
			Dirty outdoor unit control board
			Fuse (F2) tripped
230	Continuously high hot gas temperature	Hot gas sensor (Tho-D) temperature deviation occurring twice within 60 minutes or for 60	Sensor does not work (see "Communication connection")
	·	minutes continuously	Insufficient air circulation or blocked heat exchanger
			If the fault persists during cooling, there may be an insufficient amount of refrigerant
			Faulty control board
254	Communication error	Accessory board communication error	Outdoor unit dead
			Fault in the communication cable

34 Section 9 | Alarm list Jäspi Split

Alarm	Alarm text on the screen	Description	Possible cause
261	High temperature in the heat	Temperature deviation on the heat exchanger	Sensor does not work (see "Faults")
	exchanger	sensor (Tho-R1/R2) occurring five times within 60 minutes or for 60 minutes continuously.	Insufficient air circulation or blocked heat exchanger
			Faulty control board in the outdoor unit
			Too much refrigerant
262	Power transistor too hot	When the IPM (Intelligent Power Module) displays FO (Fault Output) five times during a 60-minute period.	Can occur when 15V power supply to the inverter PCB is unstable.
263	Inverter fault	Voltage from the inverter outside set	Disturbance in the power supply
		parameters four times within 30 minutes.	Service valve closed
			Insufficient amount of refrigerant
			Compressor fault
			Faulty inverter circuit board
264	Inverter fault	Communication cut between the inverter circuit	Open circuit in connection between boards
		board and control board.	Faulty inverter circuit board
			Faulty control board
265	Inverter fault	Continuous deviation in power transistor for 15	Faulty fan motor
		minutes	Faulty inverter circuit board
266	Insufficient refrigerant	Insufficient refrigerant is detected upon start-up	Service valve closed
		in cooling mode.	Loose connection sensor (BT15, BT3)
			Faulty sensor (BT15, BT3)
			Too little refrigerant.
267	Inverter fault	Compressor start fail	Faulty inverter circuit board
			Faulty control board
			Compressor fault
268	Inverter fault	Overcurrent, Inverter A/F module	Sudden power failure
271	Cold outdoor air	BT28 (Tho-A) temperature below the set value	Cold weather
		that permits operation	Sensor fault
272	Hot outdoor air	BT28 (Tho-A) temperature above the set value that permits operation	Hot weather
			Sensor fault
277	Sensor fault Tho-R	Sensor fault, heat exchanger in (Tho-R).	Open circuit or short circuit on sensor input
			Sensor does not work (see "Faults")
			Faulty control board
278	Sensor fault Tho- A	Sensor fault, ambient temperature sensor BT28	Open circuit or short circuit on sensor input
		(Tho-A).	Sensor does not work (see "Faults")
			Faulty control board
279	Sensor fault Tho-D	Sensor fault, hot gas (Tho-D).	Open circuit or short circuit on sensor input
			Sensor does not work (see "Faults")
			Faulty control board
280	Sensor fault Tho-S	Sensor fault, suction gas (Tho-S).	Open circuit or short circuit on sensor input
			Sensor does not work (see "Faults")
			Faulty control board
281	Sensor fault LPT	Sensor fault, low pressure sensor	Open circuit or short circuit on sensor input
			Sensor does not work (see "Faults")
			Faulty control board
			Fault in the refrigerant circuit
294	Incompatible outdoor air heat pump	Heat pump and indoor module/control unit do not work properly together due to technical parameters.	Outdoor unit and indoor module/control unit are not compatible

Jäspi Split Section 9 | Alarm list 35

10 Accessories

Not all accessories are available in all market areas.

GROUND STAND

Split 6-12

Prod. no. T000767

DRAIN PIPE

KVR 10-10

1 metre

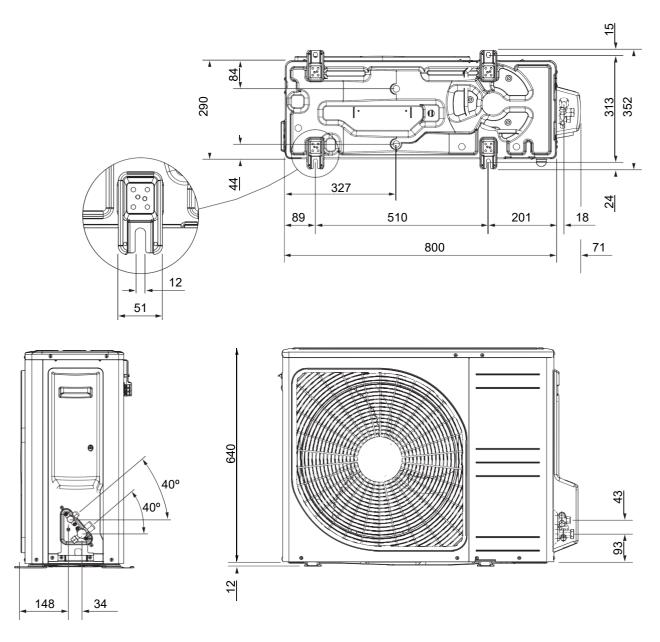
Prod. no. M03215

KVR 10-30

3 metres

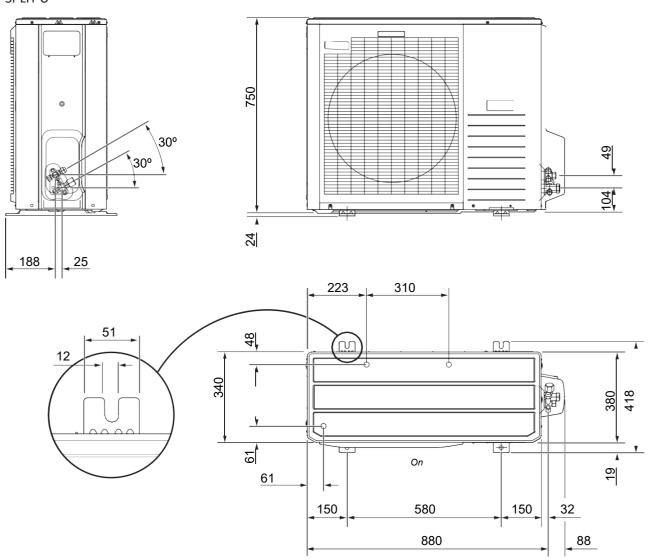
Prod. no. M03216

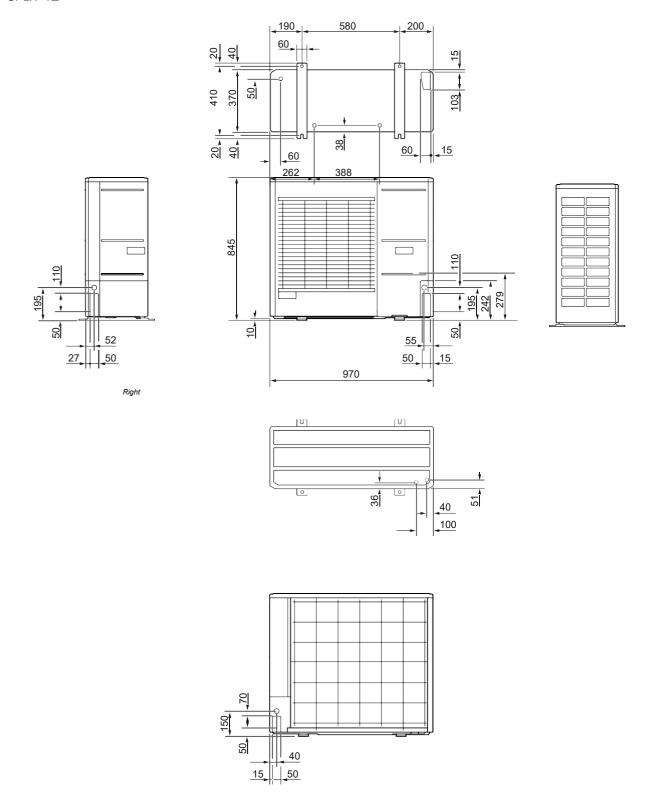
KVR 10-60

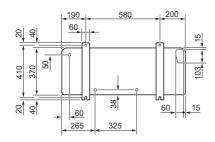

6 metres

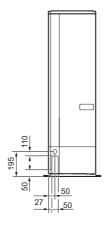
Prod. no. M03217

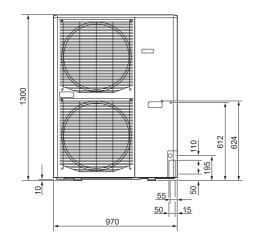
11 Technical specifications

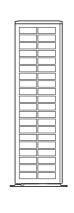

Dimensions

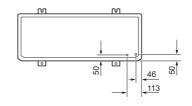

SPLIT 6

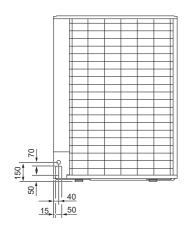

Jäspi Split Section 11 | Technical

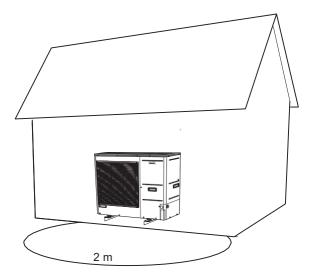

SPLIT 8






Jäspi Split Section 11 | Technical





Sound pressure levels

The outdoor unit is usually placed next to a house wall, which directs the travel of noise. This should be taken into consideration. As a result, every effort should be made to install the outdoor unit on the side of the house where the noise will be of minimal disturbance to the neighbours.

Because the sound pressure levels are further affected by walls, masonry, differences in ground level, etc., they should therefore only be considered suggestions.

Sound		SPLIT 6	SPLIT 8	SPLIT 12	SPLIT 16
Noise level* According to EN12102 at 7/45 (nominal)*	Lw(A)	51	55	58	62
Sound pressure level at a distance of 2 m free standing (nominal)*	dB(A)	37	41	44	48

^{*} Free space.

Jäspi Split Section 11 | Technical 41

Technical specifications

((IP 21

SPLIT OUTDOOR UNIT

Outdoor unit		SPLIT 6	SPLIT 8	SPLIT 12	SPLI T 16
Output data according to EN14511 AT5K	Ambient				
	temp./Supply temp.				
Hasting	,	2.67/0.5/5.32	3.86/0.83/4.65	5.21/1.09/4.78	7.03/1.45/4.85
Heating	7/35 °C (floor	2.07/0.5/5.32	3.80/0.83/4.03	5.21/1.09/4.76	7.03/1.43/4.63
Specified/supplied power/COP (kW/kW/-) - nominal	2/35 °C (floor	2.32/0.55/4.2	5.11/1.36/3.76	6.91/1.79/3.86	9.33/2.38/3.92
nonina.)				
	-7/35 °C (floor	4.60/1.79/2.57	6.60/2.46/2.68	9.00/3.27/2.75	12.1/4.32/2.80
)				
	7/45 °C	2.28/0.63/3.62	3.70/1.00/3.70	5.00/1.31/3.82	6.75/1.74/3.88
	2/45 °C	1.93/0.67/2.88	5.03/1.70/2.96	6.80/2.24/3.04	9.18/2.98/3.08
Cooling	27/7 °C	5.87/1.65/3.56	7.52/2.37/3.17	9.87/3.16/3.13	13.30/3.99/3.33
Specified/supplied power/EER - nominal	27/18 °C	7.98/1.77/4.52	11.20/3.20/3.50	11.70/3.32/3.52	17.70/4.52/3.91
	35/7 °C	4.86/1.86/2.61	7.10/2.65/2.68	9.45/3.41/2.77	13.04/4.53/2.88
	35/18 °C	7.03/2.03/3.45	9.19/2.98/3.08	11.20/3.58/3.12	15.70/5.04/3.12
Electrical data					
Rated voltage				30V 2AC 50Hz	1
Max. current	Arms	15	16	23	25
Recommended fuse	Arms	16	16	25	25
Starting current	Arms			5	
Max. airflow (heating,nominal)	m3/h	2,530	3000	4380	6000
Fan output	W	50	8	6	2X86
Drip tray heater (built-in)	W	110	100		120
Defrosting	**	110		e cycle	120
Enclosure rating				24	
Refrigerant circuit					
Refrigerant type			R4	10A	
GWP refrigerant				088	
Compressor			<u> </u>	Rotary	
Refrigerant amount	kg	1.5	2.55	2.90	4.0
CO ₂ equivalent	t	3.13	5.32	6.06	8.35
Cut-out value pressostat HP	MPa (bar)	-		4.15 (41.5)	
Cut-out value, high pressure	MPa (bar)	4.5 (45)		` '	
Cut-out value pressostat LP (15 s)	MPa (bar)	-		0.079 MPa (0.79)	
Max. length, refrigerant pipe, one coil	m		30	0*	
Max. height difference, refrigerant pipe	m		7		
Dimensions, refrigerant pipes		Gas pipe OD12,7 (1/2") Fluid line OD6.35		as pipe OD15.88 (5/8") F 5/8")	luid line OD9.52
		(1/4")			
Plumbing connections					
Plumbing connection alternative		Right side	Right side	Rigl	nt/botto
				ba	m/ ckward
Plumbing connections			2-		
Plumbing connections Dimensions and weight			Co	llar	
Width	mm	800	880 (+67 valve	970	970
widti	mm	600	cover)	970	970
Depth	mm	290	340 (+ 110 with footrail)	370 (+ 80 v	vith footrail)
Height	mm	640	750	845	1,300
Weight	kg	46	60	74	105
		<u>. </u>		<u> </u>	
Other					

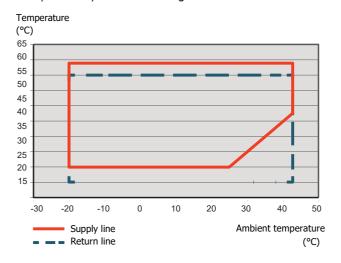
Jäspi Split Section 11 | Technical 43

SCOP & PDESIGNH

SCOP & Pdesignh according	to EN 14825							
Outdoor unit SPLITBox	Split 6 SplitB		Split 8 / SplitBox 8-12		Split 12 / SplitBox 8-12		Split 16 / SplitBox 8-12	
	Pdesignh	SCOP	Pdesignh	SCOP	Pdesignh	SCOP	Pdesignh	SCOP
SCOP 35 Average climate	4.8	4.8	8.2	4.38	11.5	4.43	14.5	4.48
SCOP 55 Average climate	5.3	3.46	7.0	3.25	10	3.38	14	3.43
SCOP 35 Cold climate	4.0	3.65	9	3.55	11.5	3.63	15	3.68
SCOP 55 Cold climate	5.6	2.97	10	2.78	13	2.85	16	2.9
SCOP 35 Warm climate	4.2	6.45	8	5.7	12	5.8	15	5.95
SCOP 55 Warm climate	4.76	4.58	8	4.58	12	4.7	15	4.8

ENERGY RATING, TEMPERATE CLIMATE

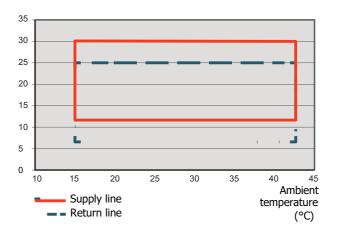
Model		Split 6 / SplitBox 6	Split 8 / SplitBox 8-12	Split 12 / SplitBox 8-12	Split 16 / SplitBox 8-12
Model outdoor unit		MCU	MCU	MCU	MCU
Temperature application	°C	35 / 55	35 / 55	35 / 55	35 / 55
Seasonal space heating energy efficiency of the product ₁₎		A++ / A++	A++ / A++	A++ / A++	A++ / A++
Seasonal space heating energy efficiency of the system ₂₎		A+++ / A++	A+++ / A++	A+++ / A++	A+++ / A++


 $[{]m _1Seasonal}$ space heating energy efficiency of the product on a scale of A++ – G.

 $^{{\}it 2} Seasonal$ space heating energy efficiency of the system on a scale of A+++ – G.

The reported efficiency of the package also takes the temperature controller into account. If an external boiler or solar heating is added to the package, the overall efficiency of the package must be recalculated.

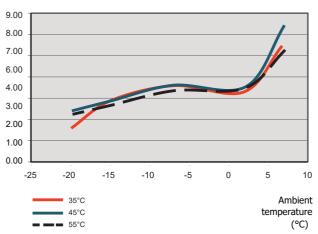
Working area


Compressor operation - heating

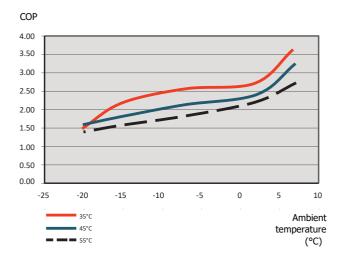
Lower operating temperatures are permitted for shorter durations on the heating side, such as during start-up.

Compressor operation - cooling

Temperature (°C)



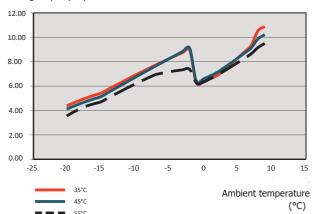
Output and COP


Output and COP at different supply temperatures. Max. specified output incl. defrosting.

Max. specified output Split 6

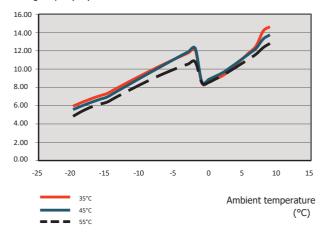
Heating output (kW)

COP SPLIT 6

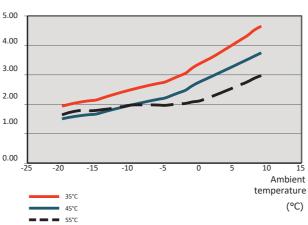


45

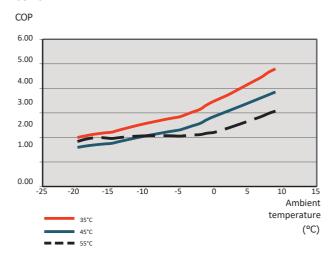
Jäspi Split Section 11 | Technical


Max. specified output SPLIT 8

Heating output (kW)

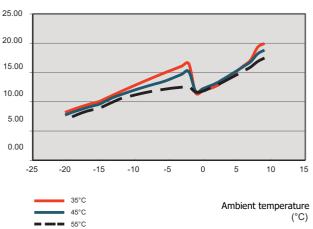

Max. specified output SPLIT 12

Heating output (kW)

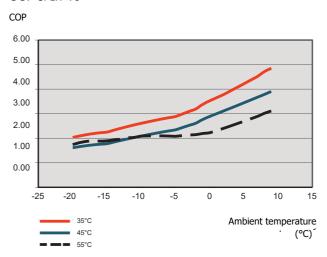


COP SPLIT 8

COP



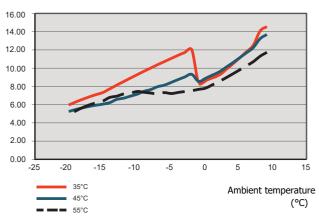
COP SPLIT 12



Max. specified output Split 16

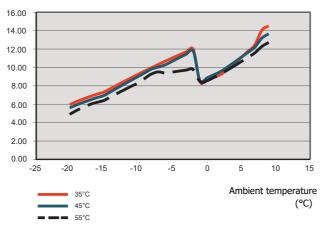
Heating output (kW)

COP SPLIT 16

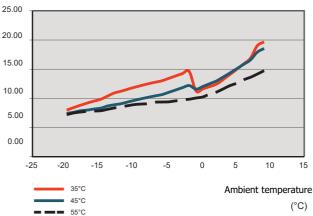


Jäspi Split Section 11 | Technical

Output with a lower fuse rating than recommended


Specified output Split 12 fuse 16A

Heating output (kW)


Specified output Split 12 fuse 20A

Heating output (kW)

Specified output Split 16 fuse 20A

Heating output (kW)

Energy rating

INFORMATION SHEET

Manufacturer		Kaukora								
Model		Split 6 + SplitBox 6	Split 8 + SplitBox 8-12	Split 12 + SplitBox 8-12	Split 16 + SplitBox 16					
Temperature application	°C	35 / 55	35 / 55	35 / 55	35 / 55					
Seasonal space heating energy efficiency class,		A++ / A++	A++ / A++	A++ / A++	A++ / A++					
average climate										
Rated heat output (Pdesignh), average climate	kW	5/5	8/7	12 / 10	15 / 14					
Annual energy consumption space heating,	kWh	2,089 / 3,248	3,882 / 4,447	5,382 / 6,136	6,702 / 8,431					
average climate										
Seasonal space heating energy efficiency,	%	188 / 131	172 / 127	174 / 132	176 / 134					
average climate										
Sound power level LWA indoors	dB	35	35	35	35					
Rated heat output (Pdesignh), cold climate	kW	4/6	9 / 10	12 / 13	15 / 16					
Rated heat output (Pdesignh), warm climate	kW	4/5	8/8	12 / 12	15 / 15					
Annual energy consumption space heating, cold climate	kWh	2,694 / 4,610	6,264 / 8,844	7,798 / 11,197	10,040 / 13,629					
Annual energy consumption space heating, warm climate	kWh	872 / 1,398	1,879 / 2,333	2,759 / 3,419	3,370 / 4,183					
Seasonal space heating energy efficiency, cold climate	%	143 / 116	139 / 108	142 / 111	144 / 113					
Seasonal space heating energy efficiency, warm climate	%	252 / 179	225 / 180	229 / 185	235 / 189					
Sound power level Lwa outdoors	dB	51	55	58	62					

PACKAGE ENERGY EFFICIENCY INFORMATION

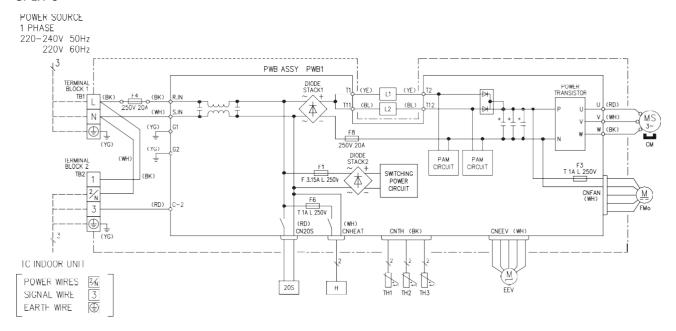
Model		Split 6 + SplitBox 6	Split 8 + SplitBox 8-12	Split 12 + SplitBox 8-12	Split 16 + SplitBox 16		
Model outdoor unit		SMO	SMO	SMO	SMO		
Temperature application	°C	35 / 55	35 / 55	35 / 55	35 / 55		
Temperature controller, class		VI					
Temperature controller, effect on efficiency	%		4	.0			
Seasonal space heating energy efficiency of the package, average climate	%	192 / 135	176 / 131	178 / 136	180 / 138		
Seasonal space heating energy efficiency class of the package, average climate		A+++ / A++	A+++ / A++	A+++ / A++	A+++ / A++		
Seasonal space heating energy efficiency of the package, cold climate	%	147 / 120	143 / 112	146 / 115	148 / 117		
Seasonal space heating energy efficiency of the package, warm climate	%	256 / 183	229 / 184	233 / 189	239 / 193		

The reported efficiency of the package also takes the temperature controller into account. If an external boiler or solar heating is added to the package, the overall efficiency of the package must be recalculated.

Jäspi Split Section 11 | Technical

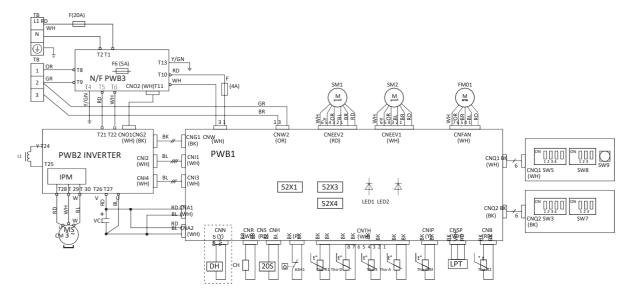
TECHNICAL DOCUMENTATION

Model		Split 6 + SplitBox 6										
Heat pump type		Air-wat	ter Exhaust									
			air-water Brine-									
			water									
		ш	r-water									
		vvale										
Low-temperature heat pump		Yes	$\boxtimes_{N^{c}}$									
Integrated immersion heater for additional hea	t	Yes	⊠ _{No}									
Heat pump combination heater		Yes	⊠ _{No}									
Climate		Tempe	erature	Cold Warm								
Temperature application		Averag		Low (35 °C)								
Applicable standards		EN14511	/ EN14825	/ EN12102								
Rated heat output	Prated	5.3	kW	Seasonal space heating energy efficiency	ηs	131	%					
Declared capacity for space heating at part loa	ad and at ambient temp	erature Tj		Declared coefficient of performance for space heating temperature Tj	at part load an	nd at ambier	nt					
Tj = -7 °C	Pdh	4.7	kW	Tj = -7 °C	COPd	1.88	-					
Tj = +2 °C	Pdh	2.8	kW	Tj = +2 °C	COPd	3.26	-					
Tj = +7 °C	Pdh	1.8	kW	Tj = +7 °C	COPd	4.72	-					
Tj = +12 °C	Pdh	2.7	kW	Tj = +12 °C	COPd	6.47	-					
Tj = biv	Pdh	4.7	kW	Tj = biv	COPd	1.88	-					
Tj = TOL	Pdh	4.1	kW	Tj = TOL	COPd	1.77	-					
Tj = -15 °C (jos TOL < -20 °C)	Pdh		kW	Tj = -15 °C (jos TOL < -20 °C)	COPd		-					
Bivalent temperature	Tbiv	-7	°C	Min. ambient temperature	TOL	-10	°C					
Capacity in cycling	Pcych		kW	COP in cycling	COPcyc		-					
Degradation coefficient	Cdh	0.99	-	Max. water supply temperature	WTOL	58	°C					
Power consumption in modes other than activ	e mode			Additional heat								
Off mode	Poff	0.007	kW	Rated heat output	Psup	1.2	kW					
Thermostat off mode	Рто	0.012	kW									
Standby	PsB	0.012	kW	Energy input type	1	Electrici tv						
Crank case heater mode	Рск	0	kW									
Other data												
Capacity control		Variable		Rated airflow (air-water)		2,526	m₃/h					
Sound power level, indoors/outdoors	Lwa	35 / 51	dB	Nominal heating medium flow			m₃/h					
Annual energy consumption	QHE	3,248	kWh	Heat collection flow brine-water or water-water			m₃/h					
Cantagt dataila	Wand 2	. To a kalendari	14 24200 5	heat pumps			<u> </u>					
Contact details	Kaukora Oy	ı ıuotekatu 1	.1, 21200 Rai	SIO FINLAND								

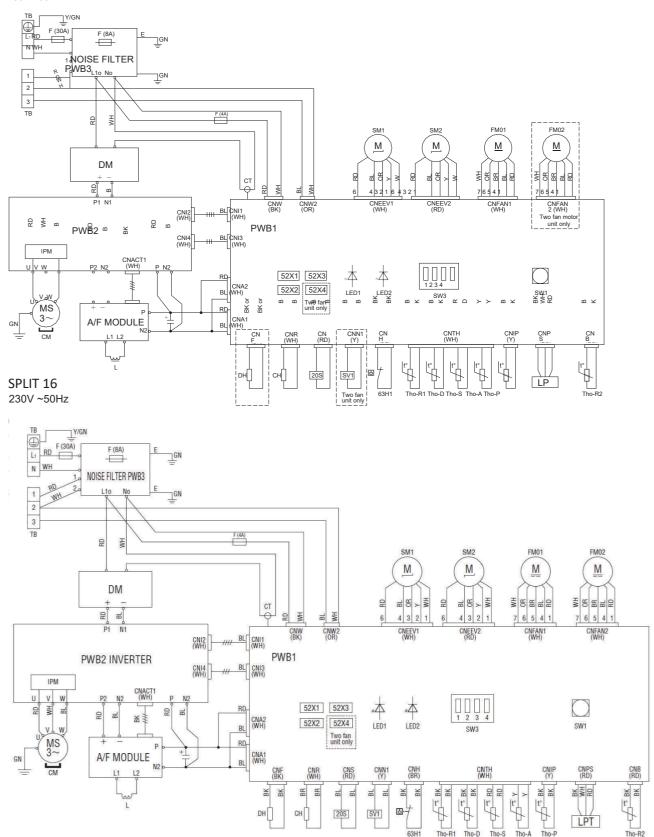

Heat pump type	X Ai				Split 8 + SplitBox 8-12					
	Z \ / "	r-water								
	E:	xhaust air-wate	r							
	В	rine-water								
	⊣H∾	ater-water								
_ow-temperature heat pump		es 🛛 N	in							
ntegrated immersion heater for additional heat	_=	es 🛛 N								
	┵									
Heat pump combination heater		es 🛛 N	<u> </u>							
Climate	X A	verage	Cold Warm							
Temperature application	X A	verage (55 °C)	Low (35 °C)							
Applicable standards	EN148	325 / EN14511	/ EN12102							
Rated heat output Prate	ed 7	kW	Seasonal space heating energy efficiency	ηs	127	%				
Declared capacity for space heating at part load and at ambient to	mperature	Tj	Declared coefficient of performance for space heating temperature Ti	ı at part load an	d at ambier	nt				
Γj = -7 °C Pdh	6.3	kW	Tj = -7 °C	COPd	1.94	-				
Γj = +2 °C Pdh	3.9	kW	Tj = +2 °C	COPd	3.11	-				
Γj = +7 °C Pdh	2.6	kW	Tj = +7 °C	COPd	4.42	-				
Γj = +12 °C Pdh	3.7	kW	Tj = +12 °C	COPd	5.93	-				
Γj = biv Pdh	6.6	kW	Tj = biv	COPd	1.83	-				
Γj = TOL Pdh	5.9	kW	Tj = TOL	COPd	1.86	-				
Γj = -15 °C (jos TOL < -20 °C) Pdh		kW	Tj = -15 °C (jos TOL < -20 °C)	COPd		-				
2: 1 11	1 0	- 1 00		T = 01	40	00				
Bivalent temperature T _{biv}	-9	°C	Min. ambient temperature	TOL	-10	°C				
Capacity in cycling Pcyc		kW	COP in cycling	COPcyc		-				
Degradation coefficient Cdh	0.97	-	Max. water supply temperature	WTOL	58	°C				
Power consumption in modes other than active mode			Additional heat							
Off mode Poff	0.00	2 kW	Rated heat output	Psup	1.1	kW				
Thermostat off mode P _{TO}	0.01	0 kW								
Standby P _{SB}	0.01	5 kW	Energy input type		Electrici ty					
Crank case heater mode Pck	0.03	0 kW			.,					
Other data										
Capacity control	Variable	е	Rated airflow (air-water)		3,000	m₃/h				
Sound power level, indoors/outdoors LwA	35 / 5	55 dB	Nominal heating medium flow		0.60	m₃/h				
Annual energy consumption QHE	4,44	7 kWh	Heat collection flow brine-water or water-water heat pumps			m₃/h				
Contact details Kauk	ora Oy Tuote	katu 11, 21200 l	Raisio FINLAND							

Model				Split 12 + SplitBox 8-12			
Heat pump type		Brine-	ust air-water				
Low-temperature heat pump		Yes	X No				
Integrated immersion heater for additional heat		Yes	⊠ No)			
Heat pump combination heater		Yes	X No)			
Climate		X Avera	ige	Cold Warm			
Temperature application		Avera	ge (55 °C)	Low (35 °C)			
Applicable standards			/ EN14511 /	EN12102			
Rated heat output	Prated	10	kW	Seasonal space heating energy efficiency	ηs	132	%
Declared capacity for space heating at part load and at	ambient temp	erature Tj		Declared coefficient of performance for space heating at part load and at ambie temperature Tj			
Tj = -7 °C	Pdh	8.9	kW	Tj = -7 °C	COPd	1.99	-
Tj = +2 °C	Pdh	5.5	kW	Tj = +2 °C	COPd	3.22	-
Tj = +7 °C	Pdh	3.5	kW	Tj = +7 °C	COPd	4.61	-
Tj = +12 °C	Pdh	5.0	kW	Tj = +12 °C	COPd	6.25	-
Tj = biv	Pdh	9.2	kW	Tj = biv	COPd	1.90	-
Tj = TOL	Pdh	8.1	kW	Tj = TOL	COPd	1.92	-
Tj = -15 °C (jos TOL < -20 °C)	Pdh		kW	Tj = -15 °C (jos TOL < -20 °C)	COPd		-
Bivalent temperature		-8	°C	Min. ambient temperature	TOL	-10	°C
-	T _{biv} Pcych	-0	kW	COP in cycling		-10	-
Capacity in cycling Degradation coefficient	Cdh	0.98	-	Max. water supply temperature	COPcyc WTOL	58	°C
Power consumption in modes other than active mode				Additional heat			
Off mode	Poff	0.002	kW	Rated heat output	Psup	1.9	kW
Thermostat off mode	Рто	0.014	kW				
Standby	PsB	0.015	kW	Energy input type		Electrici ty	
Crank case heater mode	Рск	0.035	kW		•	,	
Other data							
Capacity control		Variable		Rated airflow (air-water)		4,380	m₃/h
Sound power level, indoors/outdoors	Lwa	35 / 58	dB	Nominal heating medium flow		0.86	m₃/h
Annual energy consumption	QHE	6,136	kWh	Heat collection flow brine-water or water-water heat pumps			m₃/h
Contact details	Kaukora	Oy Tuotekatı	ı 11, 21200 R	aisio FINLAND			1

Model			Split 16 + SplitBox 16					
Heat pump type		Air-wa		_				
			ıst air-wateı	r				
		Brine-						
		Water	-water					
Low-temperature heat pump		Yes	X N	0				
Integrated immersion heater for additional heat		Yes	⊠ No	0				
Heat pump combination heater		Yes	No.	0				
Climate		X Avera	ge	Cold Warm				
Temperature application		X Avera	ge (55 °C)	Low (35 °C)				
Applicable standards		EN14825 /	EN14511 /	EN12102				
Rated heat output P	rated	14	kW	Seasonal space heating energy efficiency	ηs	134	%	
Declared capacity for space heating at part load and at ambier	t temp	erature Tj		Declared coefficient of performance for space heating temperature Ti	at part load an	d at ambier	nt	
Tj = -7 °C F	Pdh	12.5	kW	Tj = -7 °C	COPd	2.01	-	
Tj = +2 °C F	Pdh	7.6	kW	Tj = +2 °C	COPd	3.29	-	
Tj = +7 °C F	Pdh	4.9	kW	Tj = +7 °C	COPd	4.68	-	
Tj = +12 °C F	Pdh	6.8	kW	Tj = +12 °C	COPd	6.51	-	
Tj = biv F	Pdh	12.7	kW	Tj = biv	COPd	1.95	-	
Tj = TOL F	Pdh	11.0	kW	Tj = TOL	COPd	1.95	-	
Tj = -15 °C (jos TOL < -20 °C)	Pdh		kW	Tj = -15 °C (jos TOL < -20 °C)	COPd		-	
Bivalent temperature	Гыу	-8	°C	Min. ambient temperature	TOL	-10	°C	
Capacity in cycling F	cych		kW	COP in cycling	COPcyc		-	
Degradation coefficient C	Cdh	0.98	-	Max. water supply temperature	WTOL	58	°C	
Power consumption in modes other than active mode				Additional heat				
Off mode P	OFF	0.002	kW	Rated heat output	Psup	1.2	kW	
Thermostat off mode	то	0.016	kW					
Standby	SB	0.015	kW	Energy input type		Electrici ty		
Crank case heater mode	СК	0.035	kW					
Other data								
Capacity control		Variable		Rated airflow (air-water)		6,000	m₃/h	
Sound power level, indoors/outdoors	.WA	35 / 62	dB	Nominal heating medium flow		1.21	m₃/h	
Annual energy consumption (QнE	8,431	kWh	Heat collection flow brine-water or water-water heat pumps			m₃/h	
Contact details K	aukora	Oy Tuotekatu	11, 21200 R	Raisio FINLAND				


Electrical schematic

SPLIT 6


SPLIT 8

230V ~50Hz

SPLIT 12

230V ~50Hz

Jäspi Split Section 11 | Technical

Markings	Description
20S	4-way valve solenoid
52X1	Auxiliary relay (for CH)
52X2	Auxiliary relay (for DH)
52X3	Auxiliary relay (for 20S)
52X4	Auxiliary relay (for SV1)
63H1	Ylipaineensäädin
C1	Capacitor
CH	Compressor heater
CM	Compressor motor
CnA~Z	Terminal block
СТ	Current sensor
DH	Drip tray heater
DM	Diode module
F	Fuse
FM01, FM02	Fan motor
IPM	Smart power module
L/L1	Induction coil
LED1	Indicator light (red)
LED2	Indicator light (green)
LPT	Low-pressure transmitter
QN1 (EEV- H)	Expansion valve, heating
QN3 (EEV- C)	Expansion valve, cooling
SW1, 9	Refrigerant recovery
SW3, 5, 7, 8	Local settings
ТВ	Terminal block
BT28 (Tho-A)	Temperature sensor, outdoor air
Tho-D	Temperature sensor, hot gas
Tho-R1	Temperature sensor, heat exchanger (out)
Tho-R2	Temperature sensor, heat exchanger (in)
Tho-S	Temperature sensor, suction gas
Tho-P	Temperature sensor, IPM

Jäspi Split Index 59

Contact details

Kaukora Oy Tuotekatu 11 21200 Raisio

FINLAND

www.jaspi.fi

